Faculty & Staff at TUC

Dr. Tamira Elul

Tamira Elul

College: COM

Department: Basic Sciences, Student Health Center

Title: Associate Professor

Phone: (707) 638-5453

Fax: (707) 638-5430

E-Mail: tamira.elul@tu.edu

Office: Administration & Faculty 1, Rm. 133

Institution Degree Field of Study Obtained
UC Berkeley, California B.A.

Biophysics

1990

UC Berkeley, California

PhD Biophysics 1999

Cell Biology and Histology (COM, MSMHS programs, Touro University)
Biophysical Neurobiology (UC Berkeley)

STEAM
Art of Observation  (Article in Touro record)
Vision and Art (UC Berkeley)

Development of neuronal connectivity. 

We study molecular, cellular and biophysical mechanisms that regulate formation of neuronal circuits during embryonic brain development.  Our experiments are performed in the developing visual projection of tadpoles of the aquatic frog Xenopus laevis, a powerful in vivo vertebrate model system with strong genetic similarity to humans, in which we can image individual optic axons with altered molecular signaling directly in their native environment.  The main objective of our research is to determine how distinct molecular factors that regulate cell adhesion and cytoskeletal organization, such as beta-catenin, Myosin II, and APC, coordinate to modulate specific axon pathfinding and branching morphological events required to form a functional neuronal circuit.  Recently, we have also begun to examine how cannabinoid signaling interacts with distinct structural molecules to regulate neuronal circuit formation.  Our research will determine novel and essential mechanisms that regulate how neuronal circuits are first established during development, might be altered in neuro-developmental disorders and with prenatal drug and toxin exposure, and could be regenerated following injury or damage to the nervous system. 

 

STEAM

We also do research on how art can be used to communicate concepts in cell and developmental biology and in clinical practice to students and the public.  In one paper, we performed a quantitative comparison of forms (using aspect ratio and circularity index) in paintings of the Abstract Lyrical Expressionist artist Sam Francis and cells in biological tissues that resemble his paintings.  In a second art-science project we used Processing, originally developed at MIT Media Laboratory as a visual artists' programming language, to create visualizations of the cell motility that drives convergent extension of the neural ectoderm, and branching of optic axons during establishment of visual synaptic connections.  A third project has used measurements of fractal dimension to compare scaling in patterns in the photographs of the environmental artist Edward Burtynsky of man-impacted landscapes and in images of biological tissues.

Developmental Neurobiology
Regulation of in vivo axon development by CB1R and beta-catenin
Touro College University System Student Research Fellowship (to Sophia Dao), 2020

Roles of beta-catenin in optic axon pathfinding and arborization in vivo.
Touro University California Intramural Grants; 2006-2007, 2009-2010  

 
STEAM
Mathematical analysis of Cell Like Forms in Sam Francis Paintings
Sam Francis Foundation; 2012.


Research on Vision and Art.  
UC Berkeley Freshman and Sophomore Seminars; 2015, 2017, 2018. 

Developmental Neurobiology

Elul T., Koehl M.A., Keller R. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev. Biol. 1997 Nov 15;191(2):243-58.

Elul T., Koehl M.A., Keller RE. Patterning of morphogenetic cell behaviors in neural ectoderm of Xenopus laevis. Ann N Y Acad Sci. 1998 Oct 23;857:248-51.

Keller R., Poznanski A., Elul T. Experimental embryological methods for analysis of neural induction in the amphibian. Methods Mol Biol. 1999;97:351-92.

Keller R., Davidson L., Edlund A, Elul T., Ezin M., Shook D., Skoglund P. Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):897-922. Review.

Elul T., Keller R. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev Biol. 2000 Aug 1;224(1):3-19.

Elul T.M., Kimes N.E., Kohwi M., Reichardt L.F. N- and C-terminal domains of β-catenin, respectively, are required to initiate and shape axon arbors of retinal ganglion cells in vivo. J Neurosci. 2003 Jul 23;23(16):6567-75. Erratum in: J Neurosci. 2003 Sep 17;23(24):0a.

Keller R, Poznanski A, Elul T. Experimental embryological methods for analysis of neural induction in the amphibian. Methods Mol Biol. 2008;461:405-46. Review.

Wiley A, Edalat K, Chiang P, Mora M, Mirro K, Lee M, Muhr H and Elul T: The GSK-3β and α-catenin binding sites of β-catenin exert opposing effects on the terminal ventral optic axonal projection. Developmental Dynamics. 2008 May 237(5): 1434-1441.


Sohal A, Ha J, Zhu M, Lakhani F, Thiagaragan K, Olzewski L, Monakrishnan R, Elul T: Morphometrics in Developmental Neurobiology:  Quantitative analysis of growth cone motility in vivo.  Chapter in Book titled "New Insights into Morphometry Studies",  Edited by P.M. Pares-Casanova, Intech open access publisher. 2017

Patel A, Bains A, Millet R and Elul T:  Visualization of Morphogenesis using the Processing Programming Language.   Journal of Biocommunication,  2017 Vol. 41 (1).  

Jin TG, Sohal A, Peng G, Wu E and Elul T:  N-terminal and central domains of APC function to regulate branch number, length and angle  in developing optic axon arbors in vivo. Brain Research, 2018, Vol. 1687: 34-44. 

Dao S, Jones K, Elul T:  Microinjection of DNA into eyebuds in Xenopus laevis embryos, and imaging of GFP expressing optic axonal arbors in intact, living Xenopus tadpoles.  Journal of Visualized Experiments (151). e60123.  2019.

Radhika R, Farrell A, Shah A, Vu K, Revels J, and Elul T: Shared and distinct functions for Cannabinoid Receptor CB1R and Myosin II in regulation of growth cone filopodial morphology and optic axonal projections in the optic tract,  Submitted, European Journal of Neuroscience, 2020.


Art in Medical/Science Education (STEAM)

Lakhani F, Dang H, Selz P and Elul T:  Morphometrics show Sam Francis' Painted Forms are Statistically Similar to Cells in Biological Tissues.  Leonardo Journal (MIT press).  Published online, Nov. 5, 2014; in print 2016, Vol. 49 (3).

Mallouh E, Neyrink M, Elul T, Silver M et al:  Exploring Connections Between Cosmos and Mind Through Six Interactive Art Installations: As Above As Below.   Art Sci Journal. February, 2020. 

Balmagas A, Schiffman L, Narendra-Babu K, Lustig E and Elul T:  Quantifying Patterns in Art and Nature.  In second review, Journal of Mathematics and the Arts. 2020.

Elul T:  Visual Arts Enhance Instruction in Observation and Quantitative Analysis of Microscopic Forms in Cell and Developmental Biology. STEAM journal. 2020.

Torres A, Nguyen D, Chen D, Lakhani F, Elul T:  Art of Observation: Using visual arts to enhance cultural and gender competency in medical students.  In preparation.  Perspectives on Medical Education.  2020.






American Society for Cell Biology
Society for Neuroscience
Society for Developmental Biology

American Society for Botanical Art

1990- Honors in Biophysics, UC Berkeley
1993-1994: Graduate Opportunity Fellowship, UC Berkeley
1994-1999: Howard Hughes Medical Institute Predoctoral Fellowship, UC Berkeley
2000-2004: NIH NRSA Postdoctoral Fellowship, UC San Francisco

Employer Title From - To
University of California, San Francisco Post-doctoral researcher 1999-2004
Touro University-California Assistant Professor 2004-2009
Touro University-California Associate Professor 2009-
University of California, Berkeley Visiting Associate Professor/Scholar 2011-   
Last Updated: 7/28/20